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Abstract

Tropical geometry is a branch of algebraic geometry considered over the tropical semir-
ing with max-plus algebra, bridging diverse mathematical fields such as combinatorics and
applied mathematics. In this study, we focus on the stable intersection of finite parts of two
tropical projective plane curves determined by tropical homogeneous polynomials in three
variables. Our findings reveal the Γval-rationality of these stable intersection points.

1 Introduction

For a “nonzero” specific tropical polynomial f with at least two terms, duality [1] depicts the
corelations between its tropical hypersurface and regular subdivision induced by coefficients on
the lattice points of Newton polytope Newt(f). Taking this property, we can efficiently draw
tropical plane curves.

Kapranov et al. [3] established a connection between tropical hypersurfaces and the tropi-
calization of classical algebraic hypersurfaces over an algebraically closed field equipped with a
nontrivial valuation.

Over a possibly not algebraically closed field with a nontrivial valuation, the correspondence
in Kapranov ’s theorem remains unclear. In this study, we focus on the stable intersection of
finite parts of tropical projective plane curves, revealing its composition and the rationality of
its points. Based on these findings, we strive to provide a foundation for further discussions.

2 Preliminaries

We introduce some fundamental concepts and basic facts in tropical geometry that will be used
in the rest of the text. For more details and proofs, we refer to expositions in [1], [2], [5], [7],
[10].

2.1 Tropical algebra and hypersurface

Definition 2.1. (T := R∪ {−∞},⊕,�) is called the tropical semifield with two tropical oper-
ations as:

x⊕ y := max(x, y), x� y := x+ y, where x, y ∈ T.

⊕ and � are called tropical addition and tropical multiplication respectively.

Note that in order to distinguish from common plus and times, frequently they can be
written as “x + y” and “xy” respectively. The neutral element for tropical addition (resp.
tropical multiplication) is −∞ (resp. 0). There do not exist addictive inverses.
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Definition 2.2. The finite formal sum

an � xn ⊕ an−1 � xn−1 ⊕ · · · ⊕ a1 � x⊕ a0

where n ∈ N and coefficient ai ∈ T is called a tropical polynomial in x with ai ∈ T. The term
ai � xi is called tropical term in x. If an 6= −∞, then the polynomial is said to be of degree n,
denoted as deg(f) = n.

Definition 2.3. The set of all polynomials above constitutes a semiring, called the tropical
polynomial semiring in a variable x with coefficients in T, denoted by T[x]. The tropical
polynmial semiring T[x1, . . . , xn] in variables x1, . . . , xn with coefficients in T is induced by

T[x1, . . . , xn] := (T[x1, . . . , xn−1])[xn].

The definitions of term and degree of multivariate version are analogues to definition 2.2.

Remark 2.4. We can also define some similar concepts for tropical Laurent polynomials. For
simplicity, we restrict our consideration to tropical polynomials.

Remark 2.5. Formal tropical polynomials are not always identified with functionally equivalent
polynomials. For instance, let f(x) =“x2 + 1x + 2”, g(x) =“x2 + 0x + 2”. f(x) 6= g(x) but for
every p ∈ T, we have f(p) = g(p).

Definition 2.6. The tropical polynomial function semiring in n variables over T is the quotient
semiring PF (Tn) := T[x1, . . . , xn]/∼, where

f ∼ g ⇐⇒ f(p) = g(p), ∀p ∈ Tn

An element in PF (Tn) is called a tropical polynomial function.

Remark 2.7. In this study, a tropical polynomial refers to a “nonzero” tropical polynomial
function with at least two terms.

Definition 2.8. For a given tropical polynomial f =“
∑

u∈Nn cux
u” in T[x1, . . . , xn], the tropical

hypersurface VRn(f) determined by f is defined as the set of points where at least two distinct
terms of f achieve the maximum, i.e.,

VRn(f) := {p ∈ Rn : ∃i 6= j ∈ Nn, f(p) = cip
i = cjp

j}.

When n = 2, VR2(f) is called tropical plane curve.

Definition 2.9. Tropical projective plane TP2 is a quotient space induced by equivalence rela-
tion where corresponding coordinates differ by a constant number in T×. It can be glued from
three affine patches Ui := {(x1 : x2 : x3) ∈ TP2 : xi 6= −∞} ∼= T2, i = 1, 2, 3.

Definition 2.10. For a given homogeneous tropical polynomial F =“
∑

u∈Nn cux
u” inT[x1, x2, x3],

the tropical projective plane curve VTP2(F ) determined by F is defined as

VTP2(F ) := {p ∈ TP2 : ∃i 6= j ∈ Nn, F (p) = cip
i = cjp

j}.

It is not difficult to check this is well-defined. In the book [2] by Mikhalkin and Rau, it is
shown that VTP2(F ) consists of the finite part and some subsets of ∂TP2. Fix an affine patch
and let f be the dehomogenization of F with respect to the patch. The finite part VTP2(F )fin

is the closure of VR2(f) in TP2.



2.2 Valuation and tropicalization

Definition 2.11. Let K be a field. A mapping val from K to R ∪ {∞} is a valuation if it
satisfies the following axioms:

1. a = 0 ⇐⇒ val(a) = ∞,

2. val(xy) = val(x) + val(y),

3. val(x+ y) ⩾ min{val(x), val(y)}, with equality when val(x) 6= val(y).

The proof of equality can be referred to [1]. If val(a) = 0, ∀a ∈ K, val is said to be a trivial
valuation on K. If we restrict the domain to K×, the image of val is an additive subgroup of R
called the value group Γval of (K, val). An example is Puiseux series field C{{t}} with valuation
taking the least exponent.

Definition 2.12. Let (K, val) be a valuation field. Tropicalization of points in Kn is defined
by a mapping:

trop : Kn → Tn : (xi) 7→ (− val(xi)), i = 1, . . . , n.

Let f =
∑

u∈U⊂Nn cux
u be a classical polynomial in K[x1, . . . , xn], where U := {u ∈ Nn : cu 6=

0}. The tropicalization of f is the piecewise linear function trop(f) : Rn → R defined as:

trop(f) =
⊕

u∈U⊂Nn

(− val(cu))� xu

The following theorem proofed by Kapranov establishes a connection between classical hy-
persurfaces over K and tropical hypersurfaces in Rn.

Theorem 2.13. ([3]) Assume that K is algebraically closed with a nontrivial valuation. f is
defined as definition 2.12. Then tropical hypersurface defined by trop(f) and the closure in
Euclidean space Rn of tropicalization of classical algebraic hypersurface V (f) conicide:

VRn(trop(f)) = trop(V (f))

Remark 2.14. In this study, we work over a possibly not algebraically closed field K with a
nontrivial valuation val.

2.3 Related polyhedral geometry

Definition 2.15. An intersection of finite closed half-spaces is called a polyhedron. Thus a
polyhedron P is:

P := {x ∈ Rn : Ax ⩽ b}, for someA ∈ Rm×n and b ∈ Rm.

Definition 2.16. A face of a polyhedron P induced via a linear form µ ∈ (Rn)∨ is defined as:

faceµ(P ) := {x ∈ P : x · µ ⩽ y · µ, ∀y ∈ P}.

A face F of P is called lower face if for an arbitrary x ∈ F and all α > 0, x− (0, . . . , 0, α) /∈ P .

Definition 2.17. A collection Σ of polyhedra is called polyhedral complex if it satisfies:

1. If P ∈ Σ, then all its faces are in Σ.

2. If P,Q ∈ Σ and P ∩Q 6= ∅, then P ∩Q is a face of P as well as Q.



Remark 2.18. The polyhedron σ in Σ is called a cell of the complex. The support of Σ is a
collection of points from all cells, which is denoted as |Σ|.

Definition 2.19. A subdivision of a polytope P ⊂ Rn is a polyhedral complex SD(P ) if all
cells are bounded and | SD(P )| = P . SD(P ) is regular if and only if it is induced by a polytope
P ′ ⊂ Rn+1 and satisfies:

1. π(P ′) = P , where π : Rn+1 → Rn, (x1 . . . , xn+1) 7→ (x1, . . . , xn).

2. SD(P ) = {π(F ) : F is a lower face of P ′}.

Definition 2.20. Let f =“
∑

u∈U⊂Nn cux
u”∈ Γval[x1, . . . , xn], where U := {u ∈ Nn : cu 6=

−∞}. Newton polytope of f is defined as the convex hull of U :

Newt(f) := conv(U).

2.4 The Structure Theorem

Theorem 2.21. ([1]) Let f = “
∑

u∈U⊂Nn cux
u” be a tropical polynomial in n variables with

coefficients in Γval, where U := {u ∈ Nn : cu 6= −∞}. VR2(f) is connected and is the support
of a polyhedral complex in Rn, which is dual to regular subdivision of Newt(f). This regular
subdivision is induced by U on the lattice points of Newt(f).

Definition 2.22. For a given tropical f ∈ Γval[x, y]. An edge of VR2(f) is dual to a 1-dimensional
cell in the regular subdivision described above. A node of VR2(f) is dual to a 2-dimensional cell
in the regular subdivision described above, which is the point in VR2(f) whose valence is more
than two, i.e., it lies in more than two edges. The collection of all nodes of VR2(f) is denoted
as Node(f).

Definition 2.23. For given tropical polynomials f, g ∈ Γval[x, y], let Σf and Σg be polyhedral
complexes satisfying |Σf | = VR2(f) and |Σg| = VR2(g), respectively. VR2(f) and VR2(g) intersect
transversely at w if there exist unique σf ∈ Σf and σg ∈ Σg such that w ∈ relint(σf )∩relint(σg)
and dim(σf + σg) = 2.

Definition 2.24. ([1]) The stable intersection of VR2(f) and VR2(g) is defined as

VR2(f) ∩st VR2(g) := lim
ε→0

VR2(f) ∩ (εv + VR2(g)),

where v is an arbitrary vector in R2.

Remark 2.25. In TP2, we only consider the stable intersection of finite parts and give a similar
definition.

3 Main Results

We demonstrate which points can belong to stable intersection of finite parts of two tropical
projective plane curves in TP2.

Theorem 3.1. Let F,G be tropical homogeneous polynomials in Γval[x1, x2, x3]. Fix an affine
patch U3 and let the dehomogenizations of F,G be f, g respectively and a map be τ : R2 →
TP2, (x1, x2) 7→ (x1 : x2 : 0). Then we have

VTP2(F )fin ∩st VTP2(G)fin =τ(TI(f, g)) ∪ τ(VR2(f) ∩Node(g))
∪τ(VR2(g) ∩Node(f)) ∪ FPTP2(F,G).



Here TI(f, g) := {p ∈ R2 : VR2(f) and VR2(g) intersect transversally at p}. Node(f),Node(g)
are node sets of VR2(f), VR2(g) respectively. FPTP2(F,G) := {(−∞ : −∞ : 0), (−∞ : 0 :
−∞), (0 : −∞ : −∞)}∩ VTP2(F )fin ∩ VTP2(G)fin.

We define that a point in the torus of TP2 is Γval-rational if its coordinates can be expressed
as the product of an element from Γval and

1
m ,m ∈ Z>0. We show that the stable intersection

points in theorem 3.1 with finite coordinates are Γval-rational.

Theorem 3.2. If VTP2(F )fin ∩st VTP2(G)fin\∂TP2 6= ∅, then

p ∈ VTP2(F )fin ∩st VTP2(G)fin\∂TP2 =⇒ p is Γval-rational.

Moreover, p = 1
ip
(px : py : 0), px, py ∈ Γval where ip is its intersection multiplicity.
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